Reducing CRF training to a series of (possibly
nonlinear) logistic regression problems.
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Structured Prediction

y =arg m)?xF(x;y)

x 2RN
y 2f 1;::; LgM
Prototypically, x is an imagey is a discrete labeling.
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Most commonly,F can be written in linear form

X
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Structured Learning

How to pick F?
Intuitively, given some datasetx{; y1);:::; (xN:yN): F such that

y¥ arg n}axF(xk;y):

Problem: whenF changes, maximizer changes
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Linear vs. Nonlinear

Most commonly,F can be written in linear form
X T
Fy)= w' (XY );
with learning problem being to selegt 2 R".

This talk: allowF to be some function like

X
F(x;y) = f(xy),

with learning problem being to seleft 2 F



Why Nonlinear?

Usual strategy for vision:
@ Fit some fancy classi er to univariate terms.

@ Linear with highly engineered features

® Ensembles of treeghotton et al., 2009; Gould et al., 2008; Xiao and
Quan, 2009; Ladicky et al., 2009; Winn and Shotton, 2006; Schro et al.,
2008)

©® Neural Nets(He et al., 2004; Silberman and Fergus, 2011)

® Freeze those, tlinear energy to pairwise terms
@ Possibly use fancy classi er as a featur@wozin et al., 2011)
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Main Result

Previous work: Alternate between:

® Message passing updatéskg

® Gradient descent updates tb  assumed linear
What | will talk about:

@® Message passing updates tokg

® Solve logistic regression problem to upddie

@ Include\bias"term that depends o kg

Pros:

@ Optimize F \all the way"for xed f Kg.

® Use any function class we can t a logistic loss over
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Another Way of Looking at It

X
y =argm;;1xF(x;y); F(x;y) = f(x;y):

Piecewise training{ ignore messages, train edclas if the rest of
the graph didn't exist.(Sutton and McCallum, 2005)

Can think of this talk as
@ Train piecewise style
® Do message-passing inference
® Bias piecewise problems using messages, repeat
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Stryctured SVM

Givenf (x*;yK)g want to minimizeR(F) = I(x*;y*; F).
k
Original (intractable) loss function

(X ;¥ F) = F(X;y) +max F(x“;y) + ( y*;y)
y

Trouble: Y is big, discrete

M
Solution: RelaX Second (tractable) loss function

WY SF) = FOEGY) +max F(XG )+ (yS )
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Structured SVM
o3y 5 F) = POy ) + max FOCGy) + (v sy)
WY SF) = ROy +max F(XG )+ (y' )

A couple details:
@ Whatis ? Answer =f (y)g.

® WhatisM ? .
@IifmM =f : (y)2f0; 1g; v (y)=1; (x)=
(X )gv IO = Il =]
x)= . (x)
@® Answer Instead use a linear relaxation
X
M=fj (v)2[01] (y)=1; )= ()

y
QWhat'QF)Q("; ), ( y*%; )? Answer % X
F(xk; )= FOXy ) (v ) (Y% )= 5y ) (v)
y y



Change of Notation

Our relaxed loss:

WXy F) = RSy +max F(XS )+ (v )
Can also be written as:
WY F) = Gy +max

Ky )=f 5y )+ vy
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Entropy Smoothing

WGy = ROy +max

Ky )=f5y)+  ySy)

This is tractable (poly time via LP) to compute, but nagmooth.
Final approximate loss: add entropy smoothing (Meshi et aQi12)

|
y |
LSy F) = FOXGy9+max £+ H( )

Bounded error:

X
li(x;y;F)  L(y;F) Xy, F)+ Hmax, Hmax = jy jlogjy j:
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Saddle-Point Situation

X
minR(F) = min FOxXK vy + A(K)
F oo «

A()= mza'blx + H( ):

Saddle-point! But what if dualA( ) =min A(; ) exists?
Joint minimization X
min min FOXKyy+ ACK K
Fifkg

Existing works(Meshi et al., 2010; Hazan and Urtasun, 2012) alternate:

® Message-passing updates tog.

® Gradient updates td= (linear)
This talk:

@® Message passing updates tokg

® Solve logistic regression problem(s) to get néw
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Message - Passing Updates

X
A( )=m2%|x + H( ):

How to get/solve dualA( ) =min A(; )? Variant of Heskes (2006)
Create a Lagrangiah (; ; )
Multiplier  (x ) enforces that (x )= (x).
Given , maximizing is
0 O 11

1 1 X X
(y)=z—exp@—@(y)+ v) (y )AA:

Block coord. descent to minimizA(; )=max L(;; ).
For blocksf  (x )j o X
°(v) (y )+ (log (y)+ log ofy)) log (y);

1+N

0
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The Talk So Far

Want to do learning by minimizing

F(xXy9) + ACK)
k X
A( )= mz?wx + H( ):

Can transform this problem into the joint optimization

X
minmin© F(5y)+ ACK E)
f *g K

For xed F, can do mink A( ¥; K) through some interesting
coordinate descent / message-passing algorithms.

Obvious questionFor xed f g, how do we minimize with
respect toF?
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Logistic Regression
Normal logistic regression: Given dataset {y?);::; (xN;yN)

#
X X
max (Wx¥)y«  log  expWx¥)y
k y
xk 2 RM
yk 211,209
Generalize to a set of functiors. (Same forf (x;y) = (Wx)y.)
" #
X X
max  f (x¥;y%) log  expf(x¥;y)
k y

Generalize again, adding a\biak* for each &*;y).
" #

X X
max  f(xy )+ BOYS)  log  exp f(xy)+ b(y)
k y



Logistic Regression

#

X X
max f(xKyK)+ b*(y*)  log  exp f(x;y)+ bX(y)
k y

What sets of functions can we solve this for?



Logistic Regression

#
X X
max f(xKyK)+ b*(y*)  log  exp f(x;y)+ bX(y)

f2F
k y

What sets of functions can we solve this for?
Linear Functionsf (x;y) = (Wx)y



Logistic Regression

#

X X
max f(xKyK)+ b*(y*)  log  exp f(x;y)+ bX(y)
k y

What sets of functions can we solve this for?
Linear Functionsf (x;y) = (Wx)y
Things reducible to linear (polynomials, splines, etc)



Logistic Regression

#

X X
max f(xKyK)+ b*(y*)  log  exp f(x;y)+ bX(y)
k y

What sets of functions can we solve this for?
Linear Functionsf (x;y) = (Wx)y
Things reducible to linear (polynomials, splines, etc)
Multi-Layer Perceptronsf (x;y) = (W (Ux))y



Logistic Regression

#

X X
max f(xKyK)+ b*(y*)  log  exp f(x;y)+ bX(y)
k y

What sets of functions can we solve this for?
Linear Functionsf (x;y) = (Wx)y
Things reducible to linear (polynomials, splines, etc)
Multi-Layer Perceptronsf (x;y) = (W (Ux))y
Trees



Logistic Regression

#
%%XX FOxkiy) + DGR log exp T(xkiy) + b(y)
k y
What sets of functions can we solve this for?
Linear Functionsf (x;y) = (Wx)y
Things reducible to linear (polynomials, splines, etc)
Multi-Layer Perceptronsf (x;y) = (W (Ux))y
Trees
Ensembles of Trees



Logistic Regression

#

X X
max f(xKyK)+ b*(y*)  log  exp f(x;y)+ bX(y)
k y

What sets of functions can we solve this for?
Linear Functionsf (x;y) = (Wx)y
Things reducible to linear (polynomials, splines, etc)
Multi-Layer Perceptronsf (x;y) = (W (Ux))y
Trees
Ensembles of Trees
Others?
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The Reduction

X X
f =arg min FOXy9+ ACK £ Foay)= f(xy )

k
Claim
X h
f = arg max fxy9) + by
k X i
log exp f (x;y )+ bX(y)

X X
bK(y )= T @( ykiy )+ V) (v )A



Algorithm
Initialize X 0. Repeat until convergence:

Set biases to
0 1

X X
By ) 1@(yky)+ k) Ky )A

Solve the logistic regression problems

X X
f  arg max f (xX5y)+ b(y*) log expf (xXy )+ b(y)
k=1 y

Form updated parameters
“(v) Sy ySy

Perform a xed number of message-passing iterations to
update X using K.
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Function Sets

Five sets of function§ :
Zero
Constant (ignore)
Linear
Single Hidden-Layer MLP
Boosted Decision Trees
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Binary Denoising



Binary Denoising

ftig - univariate features
fri;jg - pairwise features j;

y - convolve gaussian noise with a gaussian and threshold.
Forf g=fig, ify;=0, ;2]0;:9] else ;?2[:11].
Forf g=fi;jg, ifyi=y;, j21I0,:8], else j 2[:2;1]
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Learnedf

Linear Boosting MLP
400 oD 400 oD 400 oD
L fxy=2) L fxy=2) L fxy=2)
200 200 200 .

Univariate

Pairs



Train / Test Errors

Denoising - Train

FinFj | Zero Const. Linear Boost. MLHK
Zero 490  .490 490 465 .49(Q
Const. | .490 .490 .490 465 .49(
Linear | .443 .077 .059 .056 .033
Boost. | .429 .032 .014 .012 .008
MLP 435 .031 .014 011 .008§
Denoising - Test
FinFj | Zero Const. Linear Boost. MLR
Zero 502  .502 .502 .502 .50
Const. | .502 .502 .502 504 .50
Linear | .444  .077 .059 .057 .03
Boost. | .445 .033 .015 .013 .00
MLP 445  .032 .015 .013 .00




Alternate Comparison

Take fj - MLP, fj - Linear. Compare:
Joint Training
Fit f; with =0, t pairs with f; xed.
\Piecewise"- Fix =0, train f; andf; separately



Alternate Comparison

Joint Univariate Fixed \Piecewise
Error = .015 Error = 095 Error = .438




Alternate Comparison

. . . . . T
Joint Univariate Fixed \Piecewise
100 —fy=h 100 =fxy=1) 100 =fxy=1)
L Ty 32) L TxY=2) L TxY=2)
50 50 50
o ) :
50t 1 -50 -50
100} ¢ -100 -100
02 04, 06 08 0 02 04,06 08 o 02 04, 06 o08 1
i
% —igan] % —igan] % —ik@n
7fu(x,(l,2)) 7fu(x,(l,2)) 7fu(x,(l,2))
== fix(2.1) == fix(2.1) == fix(2.1)
2,2)) —f(x.(2.2)) —fix(22)
0 0 0
09 02 04 06 08 09 02 04 06 08 09 02 04 06 08 1

Pairs (Linear) Univariate (MLP)
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Horses

frig - Univariate features |
fri;jg - pairwise features j;

y - horse or not?

Forf g=fig, (1) RBG values (2), vertical and horizontal
position (3) histogram of gradients.

Forf g=fi;jg, (1) I, distance of RGB for pixelsandj
(2) Sobel edge lter



0187 1SuoD Jreaur] Bupsoog dIN

MLPFij n Fi

Const Linear  Boosting

Zero



Const

Linear

Boosting

MLPF; n

Zero

MLP Boosting Linear Const



Zero Const Linear  Boosting MLPFj; n F;

Zero

Const

MLP Boosting Linear




Zero Const Linear  Boosting MLPFji n F;

Zero

-
17
c
]

]

Linear

Boosting




Zero Const Linear  Boosting MLPFj n F;

Zero

Const

Boosting Linear

MLP




Train / Test Errors

Horses - Train

FinFj | Zero Const. Linear Boost. MLHK

Zero 211 211 212 211 .21d
Const. | .211 211 212 211 210
Linear | .141  .139 126 111 113
Boost. | .087 .079 .074 .069  .068
MLP .054 051 .046 .043  .041

Horses - Test

FinFj | Zero Const. Linear Boost. MLHK

Zero 246 .246 247 246 .245
Const. | .246  .246 247 246 .245
Linear | .185 .185 .168 .158 .156
Boost. | .115 .107 .100 095  .094

MLP 096 .094 .087 .085 .081
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Conclusions

Take home message: Can reduce structured training to a
sequence of logistic regression problems.

Advantages:

Can use your favorite logistic regressor.
Modularity is good software engineering

Disadvantage:

Stochastic training is (presumably) faster for linear egieis
and large datasets.

Mitigating factor:

Can use stochastic solvers for logistic regression problem
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